Radial Electric Fields and Transport Barrier Formation in TFTR*

M.G. Bell

Princeton Plasma Physics Laboratory
Princeton, N.J., U.S.A.

with contributions from

R.E. Bell, D.R. Ernst, B.P. LeBlanc, F.M. Levinton, E. Mazzucato, E.J. Synakowski, M.C. Zarnstorff

Topics

- Transport effects in TFTR reversed-shear plasmas
- Turbulence suppression mechanisms
- Relationship to other enhanced confinement modes
- Anomalies and counter examples
- Possibilities for control

Reversed-Shear Plasmas Exhibited Bifurcations in Confinement

- Rates of neutral beam heating and particle fueling similar
- q profiles similar before transition
- Bifurcation of state: intermediate profiles did not occur

Ion Thermal and Electron Particle Transport Sharply Reduced in Plasma Interior after ERS Transition

- Flux balance effective χ , D: $q = -n \chi \nabla T$ and $\Gamma = -D \nabla n$
- Neoclassical calculation includes off-diagonal contributions
- Orbit squeezing effects from Shaing et al. [Phys. Plasmas 1, 3365 (1994)]
- Particle transport barrier confirmed for T and He puffed into edge

Plasma Turbulence Reduced or Suppressed in Vicinity of Internal Transport Barriers

- In ERS, bursting fluctuations measured by reflectometer disappear within shear-reversal surface
 - fluctuations disappear rapidly at initial transition into ERS
 - reappear gradually at "back-transition" from ERS
- ◆ Turbulence suppression by sheared E×B flow when

$$\omega_{E \times B} > \gamma_{\max}^{lin}$$
 where $\omega_{E \times B} = \frac{RB_{\theta}}{B} \frac{d}{dr} \left(\frac{E_r}{RB_{\theta}} \right)$ is shearing rate (Hahm and Burrell); γ_{\max}^{lin} is linear growth rate of most unstable mode

- Radial force balance: $E_r = \nabla p / (eZn) + v_{\theta}B_{\theta} v_{\theta}B_{\phi}$
 - can calculate from measurements for carbon impurities

Changing NBI Torque Can Destroy Then Recreate Turbulence Suppression & Enhanced Confinement

$$E_r = \nabla p/(eZn) + v_{\phi}B_{\theta} - v_{\theta}B_{\phi}$$

- Balanced NBI \Rightarrow E_r dominated by ∇ p term
 - positive feedback produces rapid transition
- Co-only NBI ⇒ V_Φ term opposes ∇p
 - E_r shear drops ⇒ turbulent transport returns
- Eventually, V_{ϕ} dominates and E_{r} increases
 - turbulence and transport slowly decrease
 - similar to enhanced NCS plasmas in DIII-D

E. Synakowski, E. Mazzucato, M. Beer

Suppression of Turbulence by Sheared Flow Important in Other Confinement Regimes

- Majority of TFTR operation in "Supershot" regime with NBI
 - transitionless: develops smoothly from L-mode
 - shear is positive throughout and q(0) < 1
 - sawteeth suppressed
 - minimal degradation of confinement with power up to β-limit
- Model with turbulence suppressed by flow shear reproduces many features and trends of supershot confinement
 - co-/ctr- NBI effects
 - dependence of central parameters on edge conditions
 - favorable isotope scaling in DT plasmas
 - model developed in parallel with ERS studies (D.R. Ernst)

Model with Turbulence Suppressed by Velocity Shear Reproduces Ion Temperature Profiles in Supershots

- Based on supppression of ITG turbulent ion thermal diffusivity when $\omega_{\rm E imes B} \simeq \gamma_{
 m lin}^{
 m (IFS-PPL)}$ with self-consistent calculation of neoclassical plasma flow.
- ullet Leads to apparent $\chi_{
 m i} \propto 1/{
 m T_i}$ scaling at fixed radius.
- Enhanced confinement zone expands with heating power.
- Supershot behavior resembles ERS, NCS, JT-60 ITB, etc.

E_r Shear Can Account for T_i Change with Neutral Beam Torque in L-mode Plasmas

Model power balance with

$$\chi_{i} = \chi_{i}^{(IFS-PPPL)} (1 - \alpha_{E} \omega_{E \times B} / \gamma_{lin}^{(max)})$$

using full neoclassical multi-species treatment of flows

High Resolution Measurement Shows Structure in T_e and χ_e Profiles during ERS Phase

- Move plasma during steady-state phase ⇒ gradient from single detector
- Transition from flat core to large gradient at resolution of individual detector
- Transport analysis with 50 radial zones to increase resolution
- In region of high T_e gradient, χ_e reduced by factor ~4 but remains ~ 10 D_e
- In core, $\chi_e(ERS) >> \chi_e(RS)$ and $\chi_e(ERS) >> D_e(ERS)$

Transient Excursion in Poloidal Velocity Measured Prior to ERS Transition

- Occurs in most but not all plasmas which transition to ERS
- Precedes signs of ERS in pressure profile by ~50ms

Narrow Flow Shear Layer Develops Inside q_{min} Prior to ERS Transition

- Chordal data inverted to produce local poloidal velocity
- Layer narrower than sightline separation ⇒ artifact inside
- Located between maximum pressure gradient and q_{min}

Radial Force Balance Confirmed by Measurement during E_r Transient

- All terms measured experimentally
- Motional Stark Effect (MSE) diagnostic modified to measure simultaneously emission from full and half energy injected neutrals \Rightarrow separation of E_r, B₀
- Changes in ∇p , v_{ϕ} terms small compared to change in v_{θ} term during transient

Ion Bernstein Wave Heating Can Drive Localized Poloidal Rotation and Create Velocity Shear

- Chordal data inverted to produce local v_θ
- Shear develops injection in absorption region during Ion Bernstein Wave
- With available power, rotation insufficient to suppress turbulent transport

Second Type of Confinement Transition in RS

- "Type II" occurs in RS plasmas below threshold power for normal (Type I) ERS
- Reductions in χ_i , χ_{φ} ; some reduction in D_e but not as marked as Type I
- Type II occurs as q_{min} → 2; the "foot" of the barrier is just outside q_{min}
 - Similarity to barriers formed in JET OS plasmas

Type II Transitions Occur for Range of E_r Profiles

- Vary co-/ctr- NBI balance at constant power to change rotation
- Transition time does vary as q profile is affected by beam-driven current
- E × B shear does not appear to be essential for triggering Type II transitions

Summary and Issues

- The radial electric field plays a crucial role in tokamaks
 - possibilities for improved confinement the critical issue
- Suppression of turbulence by sheared E × B flow may underlie many regimes of improved core confinement
 - correlation between suppression of fluctuations and some anomalous transport channels established in plasma interior
 - different loss channels have very different responses
 - anomalous transient flows can accompany ITB formation
- ♦ Caveat: other mechanisms appear to exist for ITB formation
- Development of tools to control transport barriers will be vital
 - sharp transport barriers create stability problems
 - flow control by RF waves a possibility

